首页> 外文OA文献 >Parallel Pairwise Correlation Computation On Intel Xeon Phi Clusters
【2h】

Parallel Pairwise Correlation Computation On Intel Xeon Phi Clusters

机译:Intel Xeon phi集群上的并行两两相关计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Co-expression network is a critical technique for the identification ofinter-gene interactions, which usually relies on all-pairs correlation (orsimilar measure) computation between gene expression profiles across multiplesamples. Pearson's correlation coefficient (PCC) is one widely used techniquefor gene co-expression network construction. However, all-pairs PCC computationis computationally demanding for large numbers of gene expression profiles,thus motivating our acceleration of its execution using high-performancecomputing. In this paper, we present LightPCC, the first parallel anddistributed all-pairs PCC computation on Intel Xeon Phi (Phi) clusters. Itachieves high speed by exploring the SIMD-instruction-level and thread-levelparallelism within Phis as well as accelerator-level parallelism among multiplePhis. To facilitate balanced workload distribution, we have proposed a generalframework for symmetric all-pairs computation by building bijective functionsbetween job identifier and coordinate space for the first time. We haveevaluated LightPCC and compared it to two CPU-based counterparts: a sequentialC++ implementation in ALGLIB and an implementation based on a parallel generalmatrix-matrix multiplication routine in Intel Math Kernel Library (MKL) (alluse double precision), using a set of gene expression datasets. Performanceevaluation revealed that with one 5110P Phi and 16 Phis, LightPCC runs up to$20.6\times$ and $218.2\times$ faster than ALGLIB, and up to $6.8\times$ and$71.4\times$ faster than single-threaded MKL, respectively. In addition,LightPCC demonstrated good parallel scalability in terms of number of Phis.Source code of LightPCC is publicly available athttp://lightpcc.sourceforge.net.
机译:共表达网络是鉴定基因间相互作用的一项关键技术,通常依赖于跨多个样本的基因表达谱之间的全对相关性(或相似度量)计算。皮尔逊相关系数(PCC)是一种广泛用于基因共表达网络构建的技术。但是,所有对PCC计算在计算上都需要大量的基因表达谱,从而促使我们使用高性能计算来加快其执行速度。在本文中,我们介绍了LightPCC,这是Intel Xeon Phi(Phi)群集上的第一个并行和分布式全对PCC计算。通过研究Phis中的SIMD指令级和线程级并行性以及multiPhis中的加速器级并行性,可以实现高速。为了促进平衡的工作量分配,我们首次提出了通过在作业标识符和坐标空间之间建立双射函数来实现对称全对计算的通用框架。我们对LightPCC进行了评估,并将其与两个基于CPU的副本进行了比较:ALGLIB中的sequenceC ++实现和英特尔数学内核库(MKL)中基于并行通用矩阵-矩阵乘法例程的实现(使用双精度),使用一组基因表达数据集。性能评估显示,与一台5110P Phi和16 Phis相比,LightPCC的运行速度比ALGLIB快20.6美元和218.2倍,比单线程MKL分别快6.8美元和71.4倍。此外,LightPCC在Phis数量方面表现出良好的并行可伸缩性。LightPCC的源代码可从http://lightpcc.sourceforge.net公开获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号